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We present an efficient method for the calculation of matrix elements between two
plane waves interacting with a molecular Coulombic field. The molecular charge
density is considered a sum of the nuclear point charges and the electronic part de-
veloped in products of Gaussian-type functions. The Gaussians may have arbitrary
powers of x, y, z before the exponential term. The same method is also applied to
the calculation of derivatives of the Coulomb matrix elements with respect to the
positions of atomic nuclei. These elements are useful in multichannel treatment of
electron–molecule collisions with vibrational excitation of the molecule. Sample cal-
culations of Coulombic matrix elements for the H2 molecule with Cartesian Gaussian
basis set are reported. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The purpose of this paper is to develop a simple and effective algorithm for the evaluation
of Coulomb integrals encountered in scattering theories. Recently we published a method
[1, 2] for the numerical treatment of electron–molecule scattering problems. The method is
based on a numerical solution of the Lippmann–Schwinger integral equation in momentum
space. The numerical integration is performed by the Gaussian quadrature. When restricted
to the static-exchange approximation, Coulomb and exchange integrals over plane waves
are needed. Compared to the Coulomb part, the exchange contribution is a weaker and
smoother part of the interaction between the scattering electron and a molecule. On the
other hand, evaluation of exchange integrals was in fact the main computational task of
our calculations. We devoted therefore much attention to this problem, and thus our effort
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resulted in the development [3, 4] of methods for a more efficient evaluation of exchange
integrals. When these new methods were combined with the interpolation of exchange
integrals from a smaller angular numerical quadrature to a larger quadrature, the evaluation
of free–free Coulomb integrals became the most time-consuming step of our calculations.
We succeeded in speeding up this step also in a way which is described in this paper. The
formulas for free–free Coulomb integrals have been available in the literatute [5, 6] for a
long time. Watson and McKoy [7] published them in a form suitable for computer coding.
The advantage of our formulas for the free–free Coulomb integrals over those reported by
Watson and McKoy [7] is the factorization of terms that are common to all pairs of plane-
wave functions from a given basis set and that they can be easily differentiated with respect
to the coordinates of atoms in the target.

2. METHOD

The static or Coulombic part of the molecular potential is given by

Vs =
∫

ρ(r′)
|r − r′| dr′, (1)

where ρ(r) is the total charge density of the molecule

ρ(r) =
∑

A

Z Aδ(r − RA) − del(r), (2)

where Z A and RA are nuclear charge and coordinate, respectively, and del(r) is the electron
density. Our task is to derive an algorithm for the matrix element

〈k1|Vs |k2〉 = 1

8π3

∫
eiK·rVs(r) dr, (3)

usually referred to as the Coulomb integral. Here K = k2 − k1. Representing the two-
electron operator as a Fourier integral

1

|r − r′| = 1

2π2

∫
dk
k2

eik·(r−r′), (4)

the matrix element (3) is written as

〈k1|Vs |k2〉 = 1

2π2 K 2

∫
ρ(r)eiK·r dr. (5)

The term on the right side diverges if K → 0. This fact complicates use of the above
formula in scattering calculations. However, as mentioned in [1], for the purpose of solving
the Lippmann–Schwinger equation, the forward term may by replaced by

〈k|Vs |k〉 = − 1

4π2k2
kT Mk, (6)

where M is the molecular second moment.
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Program packages for molecular structure calculations mostly assume electron density
in the form

del =
∑

i

∑
j

Di j gi (r)g j (r), (7)

where gk(r) denotes a Gaussian-type function. We limit ourselves to the Cartesian Gaussians
centered at position A

gk(r) = Nk(x − Ax )
mx (y − Ay)

my (z − Az)
mz e−a(r−A)2

, (8)

with the normalisation factor

Nk =
[(

π

2a

)3/2
(2mx − 1)!!(2my − 1)!!(2mz − 1)!!

22(mx +my+mz)amx +my+mz

]−1/2

. (9)

Conversion of our results to other types such as Hermitian or spherical Gaussians can be
made by simple transformation. One of the advantages of using Gaussians in physics and
chemistry is that integrals of type (5) can be separated in the form

I (A, B, i, j, K) =
∫

gi (r − A)g j (r − B)eiK·r dr

= Ni N j e
− ab

a+b |A−B|2 J mx nx
x (i, j)J

my ny
y (i, j)J mznz

z (i, j). (10)

Now the problem reduces to the evaluation of one-dimensional integrals

J m,n
x (i, j) =

∫ ∞

−∞
(x − Ax )

m(x − Bx )
ne−γ (x−Px )

2
ei Kx x dx, (11)

where

γ = a + b (12)

P = aA + bB
a + b

. (13)

The integral (11) can be written in compact form

J m,n
x (i, j) =

m+n∑
k=0

cm,n
k (Ax , Bx , Px )�k(γ, Px , Kx ), (14)

where �k(γ, Px , Kx ) denotes the integral

�k(γ, Px , Kx ) =
∫ +∞

−∞
(x − Px )

ke−γ (x−Px )
2
ei Kx x dx . (15)

The quantities cm,n
k (Ax , Bx , Px ) and �k(γ, Px , Kx ) are determined by recurrence relations

�k+2(γ, Px , Kx ) = − ∂

∂γ
�k(γ, Px , Kx ) = i Kx

2γ
�k+1(γ, Px , Kx ) + K − 1

2γ
�k(γ, Px , Kx )

(16)
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and

cm+1,n
k (Ax , Bx , Px ) = (Px − Ax )c

m,n
k (Ax , Bx , Px ) + cm,n

k−1(Ax , Bx , Px ) (17)

cm,n+1
k (Ax , Bx , Px ) = (Px − Bx )c

m,n
k (Ax , Bx , Px ) + cm,n

k−1(Ax , Bx , Px ). (18)

The system of Eqs. (16)–(18) can be treated on a computer as a recursive procedure with
boundary conditions

�0(γ, Px , Kx ) =
√

π

γ
ei Kx Px − K 2

x
4γ (19)

�1(γ, Px , Kx ) = i Kx

2γ
�0(γ, Px , Kx ) (20)

c0,0
0 (Ax , Bx , Px ) = 1 (21)

c1,0
0 (Ax , Bx , Px ) = Px − Ax , c0,1

0 (Ax , Bx , Px ) = Px − Bx . (22)

The above procedure may also be applied to the calculation of molecular second moments,
which can be represented by means of products of integrals (11). For example,∫

xygi (r)g j (r) dr = Ni N j e
− ab

a+b
(

J ′mx nx
x (i, j)J

′my ny
y (i, j)J mznz

z (i, j)

+ Px J mx nx
x (i, j)J

′my ny
y (i, j)J mznz

z (i, j) + Py J ′mx nx
x (i, j)J

my ny
y (i, j)

× J mznz
z (i, j) + Px Py J mx nx

x (i, j)J
my ny
y (i, j)J mznz

z (i, j)
)

(23)

and ∫
x2gi (r)g j (r) dr = Na Nbe− ab

a+b
(

J ′′mx nx
x (i, j)J

my ny
y (i, j)J mznz

z (i, j)

+ 2Px J ′mx nx
x (i, j)J

my ny
y (i, j)J mznz

z (i, j)

+ P2
x J mx nx

x (i, j)J
my ny
y (i, j)J mznz

z (i, j)
)
. (24)

The modified integrals (11) are defined as

J ′m,n
x (i, j) =

m+n∑
k=0

cm,n
k (Ax , Bx , Px )�k+1(γ, Px , Kx ) (25)

and

J ′′m,n
x (i, j) =

m+n∑
k=0

cm,n
k (Ax , Bx , Px )�k+2(γ, Px , Kx ). (26)

3. DERIVATIVES OF COULOMBIC INTEGRALS

Calculations of molecular processes involving small displacements of nuclear positions
are usually made with the help of first- and second-order Taylor expansions of operators
describing the system. A well-known example is the analytic method [10] for the evaluation
of molecular force constants within of Hartree–Fock approximation. The method uses
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expansion of molecular orbitals under the influence of displacements of nuclei with respect
to their equilibrium positions so that the new density matrix in Eq. (7) can be written as

Pαβ =
∑
i∈occ

∑
k

∑
l

U ∗
ikc∗

αkUilcβl . (27)

Here the quantities cαk are expansion coefficients of molecular orbitals in the Gaussian basis
set. Greek symbols are indices for Gaussians; Latin letters count for molecular orbitals.
The matrix U contains all information about changing the molecular orbitals with respect
to external perturbation [8, 9]. When restricted to the first-order perturbation theory, the
elements of the matrix U can be written as

Uik(Q) = δik − uik Q, (28)

where Q stands for a perturbational parameter. The coefficients uik are usually called
coupled perturbed Hartree–Fock (CPHF) coefficients and they can be obtained by a set of
linear CPHF equations. The formulas suitable for computer coding were published by Pople
and collaborators [10].

In electron–molecule scattering, displacement of atomic nuclei appears in collision the-
ories accompanied by vibrational excitation of the molecular target. The multichannel
treatment of electron–molecule scattering accompanied by vibrational excitation requires
knowledge of matrix elements of the type

〈�1(r, R)|Vs(r, R)|�2(r, R)〉. (29)

The static potential now depends on both electronic (r) and nuclear (R) coordinates. In
adiabatic approximation the element (29) reduces to

〈k1χi (Q)|Vs(r, R)|k2χ j (Q)〉. (30)

Here χn is the wavefunction of the nth vibrational state; Q represents a normal coordinate
corresponding to this particular state. Expanding the static potential into the Taylor series
up to the first-order and using well-known properties of eigenfunctions of the harmonic
oscillator we get

〈k1χi (Q)|Vs(r, R)|k2χ j (Q)〉 ≈ 〈k1|Vs(r, R)|k2〉δi j

+ 1√
2

∂〈k1|Vs(r, R)|k2〉
∂ Q

(δi−1, j + δi+1, j ). (31)

Evaluation of derivatives of the static potential now reduces to the derivation of the quantity
(10) with respect to nuclear coordinates

∂ I (A, B, i, j, K)

∂C
. (32)

The expression (32) is zero if C �= A and C �= B. If both Gaussians are centered on the same
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atom, the evaluation is also very easy. Let us shift the position of nucleus A

I (A +∆, A +∆, i, j, K) =
∫

ga(r − A −∆)gb(r − A −∆)eiK·r dr

= eiK·∆ I (A, A, i, j, K). (33)

Differentiation with respect to ∆ yields

∂ I (A, A, i, j, K)

∂A
= iKI (A, A, i, j, K). (34)

In a general case we may obtain the derivatives directly from the formulas introduced in
Section 2:

∂ I (A, B, i, j, K)

∂ Ax

= Na Nbe− ab
a+b |A−B|2

[
∂ J mx nx

x (i, j)

∂ Ax
J

my ny
y (i, j)J mznz

z (i, j) − 2ab

a + b
Ax I (A, B, i, j, K)

]
.

(35)

In the following expressions we omit the subscripts indicating a particular Cartesian
coordinate:

∂ J mx nx
x (i, j)

∂ Ax
= J mn(i, j)(A)

=
m+n∑
k=0

cm,n
k(A)(A, B, P)�k(γ, P, K ) +

m+n∑
k=0

cm,n
k (A, B, P)�k(A)(γ, P, K ).

(36)

Recurrence relations for all derivatives in the last equation can be obtained directly from
Eqs. (16)–(22):

�k+2(A)(γ, P, K ) = i K

2γ
�k+1(A)(γ, P, K ) + k − 1

2γ
�k−2(A)(γ, P, K ) (37)

and

Cm+1,n
k(A) (A, B, P) = (P − A)cm,n

k(A)(A, B, P) + cm,n
k−1(A)(A, B, P) + β

γ
cm,n

k (A, B, P) (38)

Cm,n+1
k(A) (A, B, P) = (P − B)cm,n

k(A)(A, B, P) + cm,n
k−1(A)(A, B, P) + α

γ
cm,n

k (A, B, P) (39)

�0(A)(γ, P, K ) = i K

γ
�0(γ, P, K ) (40)

�1(A)(γ, P, K ) = i K

2γ
�0(A)(γ, P, K ) (41)

c0,0
0(A)(A, B, P) = 0. (42)

c1,0
0(A)(A, B, P) = −β

γ
, c0,1

0(A)(A, B, P) = α

γ
. (43)
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TABLE I

Gaussian Basis Set Used for the Calculation

mx + my + mz Exponent Contraction coefficient

0 33.87000000 0.00606800
5.09500000 0.04530800
1.15900000 0.20282200

0 0.32580000 1.00000000
0 0.10270000 1.00000000
1 1.40700000 1.00000000
1 0.38800000 1.00000000
2 1.05700000 1.00000000

The derivatives of the density matrix needed in Eq. (7) can be easily obtained by use of
standard electronic structure theory program packages.

4. NOTES ON COMPUTATIONAL PROCEDURES AND BENCHMARK RESULTS

In the context of electron– and positron–molecule collisions, the method presented here
has two main advantages. First, it can be applied to Gaussian basis sets with the arbitrary
power of the preexponential function. The second advantage follows from Eqs. (17), (18)
and (21), (22). If the wavefunction of the scattered electron is represented in momentum
space, one usually needs a large number of quadrature nodes to integrate the Lippmann–
Schwinger equation with sufficient accuracy. Typically, it is considerably larger than the
number of Gaussians necessary for accurate representation of electron density. It is clear
by inspection of the set of Eqs. (16)–(18) that computationally the most demanding step is
represented by the pair of recurrence relations (17) and (18). The coefficients cm,n

k(A)(A, B, P)

do not depend on K, so it is advantageous to evaluate them first, keep them in memory,
and use them in all the steps when K is changed. The same holds for the calculation of
derivatives of Coulombic integrals.

To present benchmark results of our algorithm, we calculated Coulomb integrals and
their derivatives for electron–H2 scattering. The Dunning’s cc-pVTZ Gaussian basis set
[11] was used for the generation of molecular density. This basis set can be denoted as
[3s2p1d]. The exponents and contraction coefficients are listed in Table I. The pair of
k1 and k2 vectors in Eq. (3) was fixed in a line and the second vector was scanned from
five different positions. The Cartesian coordinates (in atomic units) of atomic nuclei were
fixed at (0,0,−1) and (0,0,1), respectively. The last column of Table II contains derivatives
of Coulombic integrals with respect to the Z -position of the first atom. The results are

TABLE II

Coulomb Integrals for e–H2 Scattering

Kx Ky Kz 〈k1|Vs | k2〉 ∂
∂ Z1

〈k1|Vs | k2〉
0.000000 0.000000 0.000000 (−0.5947965E−01, 0.0000000E+00) (−0.2121398E−03, 0.0000000E+00)
0.017101 0.029620 0.093969 (−0.5893961E−01, −0.2763876E−14) (−0.6691569E−03, −0.2769256E−02)
0.034202 0.059240 0.187939 (−0.5734116E−01, −0.1207362E−14) (−0.2011707E−02, −0.5388307E−02)
0.051303 0.088859 0.281908 (−0.5475436E−01, −0.5218139E−15) (−0.4157089E−02, −0.7717840E−02)
0.068404 0.118479 0.375877 (−0.5128719E−01, −0.3371799E−15) (−0.6976542E−02, −0.9638838E−02)
0.085505 0.148099 0.469846 (−0.4707853E−01, −0.1822238E−15) (−0.1030740E−01, −0.1105984E−01)
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summarized in Table II. Since the values of the integrals (last two columns) depend only
on the difference vector K = k1 − k2, Cartesian coordinates of this vector were used as
independent variables.
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